Ganstockpredic
title: “GAN predict next state” date: 2019-03-15 classes: wide use_math: true tags: python keras tensorflow reinforcement_learning machine_learning GAN DCGAN category: reinforcement learning —
Predict next stock state
def gan_predict(self):
tf.reset_default_graph()
gan = GAN(num_features=5, num_historical_days=self.num_historical_days,
generator_input_size=200, is_train=False)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess, self.gan_model)
clf = joblib.load(self.xgb_model)
for sym, date, data in self.data:
# gan.features input X placeholder : num_historical_days * num_features(5)
features = sess.run(gan.features, feed_dict={gan.X:[data]})
print('features {}'.format(features))
_features.append(features)
features = xgb.DMatrix(features)
print('{} {} {}'.format(str(date).split(' ')[0], sym, clf.predict(features)[0][1] > 0.5))