AI is my favorite domain as a professional Researcher. What I am doing is Reinforcement Learning,Autonomous Driving,Deep Learning,Time series Analysis, SLAM and robotics. Also Economic Analysis including AI,AI business decision
fromkeras.layersimportInput,Densefromkeras.modelsimportModel# this is the size of our encoded representations
encoding_dim=32# 32 floats -> compression of factor 24.5, assuming the input is 784 floats
# this is our input placeholder
input_img=Input(shape=(784,))# "encoded" is the encoded representation of the input
encoded=Dense(encoding_dim,activation='relu')(input_img)# "decoded" is the lossy reconstruction of the input
decoded=Dense(784,activation='sigmoid')(encoded)# this model maps an input to its reconstruction
autoencoder=Model(input_img,decoded)
# this model maps an input to its encoded representation
encoder=Model(input_img,encoded)# create a placeholder for an encoded (32-dimensional) input
encoded_input=Input(shape=(encoding_dim,))# retrieve the last layer of the autoencoder model
decoder_layer=autoencoder.layers[-1]# create the decoder model
decoder=Model(encoded_input,decoder_layer(encoded_input))
```python
from keras.datasets import mnist
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from ke...