%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from pandas import Series, DataFrame
from numpy.random import normal, multivariate_normal
beta = 1.0/(0.3)**2
alpha = 1.0/100**2
order = 9
# {x_n,y_n} (n=1...N)
def create_dataset(num):
dataset = DataFrame(columns=['x','y'])
for i in range(num):
x = float(i)/float(num-1)
y = np.sin(2.0*np.pi*x) + normal(scale=0.3)
dataset = dataset.append(Series([x,y], index=['x','y']),
ignore_index=True)
return dataset
def resolve(dataset, m):
t = dataset.y
phis = DataFrame()
for i in range(0,m+1):
p = dataset.x**i
p.name="x**%d" % i
phis = pd.concat([phis,p], axis=1)
for index, line in phis.iterrows():
phi = DataFrame(line)
if index == 0:
phiphi = np.dot(phi,phi.T)
else:
phiphi += np.dot(phi,phi.T)
s_inv = alpha * DataFrame(np.identity(m+1)) + beta * phiphi
s = np.linalg.inv(s_inv)
# m(x)
def mean_fun(x0):
phi_x0 = DataFrame([x0 ** i for i in range(0,m+1)])
for index, line in phis.iterrows():
if index == 0:
tmp = t[index] * line
else:
tmp += t[index] * line
return (beta * np.dot(np.dot(phi_x0.T, s), DataFrame(tmp))).flatten()
# s(x)
def deviation_fun(x0):
phi_x0 = DataFrame([x0 ** i for i in range(0,m+1)])
deviation = np.sqrt(1.0/beta + np.dot(np.dot(phi_x0.T, s), phi_x0))
return deviation.diagonal()
for index, line in phis.iterrows():
if index == 0:
tmp = t[index] * line
else:
tmp += t[index] * line
mean = beta * np.dot(s, DataFrame(tmp)).flatten()
return mean_fun, deviation_fun, mean, s
# Main
if __name__ == '__main__':
df_ws = DataFrame()
fig1 = plt.figure()
fig2 = plt.figure()
for c, num in enumerate([4,5,10,100]):
train_set = create_dataset(num)
mean_fun, deviation_fun, mean, sigma = resolve(train_set, order)
ws_samples = DataFrame(multivariate_normal(mean,sigma,4))
subplot1 = fig1.add_subplot(2,2,c+1)
subplot1.set_xlim(-0.05,1.05)
subplot1.set_ylim(-2,2)
subplot1.set_title("N=%d" % num)
subplot2 = fig2.add_subplot(2,2,c+1)
subplot2.set_xlim(-0.05,1.05)
subplot2.set_ylim(-2,2)
subplot2.set_title("N=%d" % num)
subplot1.scatter(train_set.x, train_set.y, marker='o', color='blue')
subplot2.scatter(train_set.x, train_set.y, marker='o', color='blue')
linex = np.arange(0,1.01,0.01)
liney = np.sin(2*np.pi*linex)
subplot1.plot(linex, liney, color='green',linestyle=':')
m = np.array(mean_fun(linex))
d = np.array(deviation_fun(linex))
subplot1.plot(linex, m, color='red', label='mean')
subplot1.legend(loc=1)
subplot1.plot(linex, m-d, color='black', linestyle='--')
subplot1.plot(linex, m+d, color='black', linestyle='--')
m = np.array(mean_fun(linex))
d = np.array(deviation_fun(linex))
liney = m
subplot2.plot(linex, liney, color='red', label="mean")
subplot2.legend(loc=1)
def f(x, ws):
y = 0
for i, w in enumerate(ws):
y += w * (x ** i)
return y
for index, ws in ws_samples.iterrows():
liney = f(linex, ws)
subplot2.plot(linex, liney, color='red', linestyle='--')
fig1.show()
fig2.show()