Tensorflow tf concat
tf.tile
tf.concat(
values,
axis,
name='concat'
)
- For example:
import tensorflow as tf
tf.InteractiveSession()
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.concat([t1, t2], 0) # [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tf.concat([t1, t2], 1) # [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
# tensor t3 with shape [2, 3]
# tensor t4 with shape [2, 3]
tf.shape(tf.concat([t3, t4], 0)) # [4, 3]
tf.shape(tf.concat([t3, t4], 1)) # [2, 6]
As in Python, the axis could also be negative numbers. Negative axis are interpreted as counting from the end of the rank, i.e., axis + rank(values)-th dimension.
- For example:
t1 = [[[1, 2], [2, 3]], [[4, 4], [5, 3]]]
t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
tf.concat([t1, t2], -1)
#would produce:
[[[ 1, 2, 7, 4],
[ 2, 3, 8, 4]],
[[ 4, 4, 2, 10],
[ 5, 3, 15, 11]]]
t1 = [[[1, 2, 3], [4, 5, 6]]]
t2 = [[[7, 8, 9], [10, 11, 12]]]
out = tf.concat([t1, t2], 2)
print(out.eval())
[[[ 1 2 3 7 8 9]
[ 4 5 6 10 11 12]]]