Tensorflow tflearn layers.normalization.batch_normalization
tflearn layers.normalization.batch_normalization
tflearn.layers.normalization.batch_normalization (incoming, beta=0.0, gamma=1.0, epsilon=1e-05, decay=0.9, stddev=0.002, trainable=True, restore=True, reuse=False, scope=None, name=’BatchNormalization’)
Normalize activations of the previous layer at each batch.
- Arguments
incoming: Tensor. Incoming Tensor.
beta: float. Default: 0.0.
gamma: float. Default: 1.0.
epsilon: float. Defalut: 1e-5.
decay: float. Default: 0.9.
stddev: float. Standard deviation for weights initialization.
trainable: bool. If True, weights will be trainable.
restore: bool. If True, this layer weights will be restored when loading a model.
reuse: bool. If True and 'scope' is provided, this layer variables will be reused (shared).
scope: str. Define this layer scope (optional). A scope can be used to share variables between layers. Note that scope will override name.
name: str. A name for this layer (optional).
-
References
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shif. Sergey Ioffe, Christian Szegedy. 2015.
-Links